奈米量測技術 (III) XRD (X-ray Diffraction)(部分)

X-ray Diffraction

- Miller indices
- 布拉格定律(Bragg's Law)
- Scherrer's Formula
- Data Analysis Examples

Miller Indices

- Miller Indices are a symbolic vector representation for the orientation of an atomic plane in a crystal lattice and are defined as the reciprocals of the fractional intercepts which the plane makes with the crystallographic axes.
- (*hkl*) = parenthesis designate a crystal face or a family of planes throughout a crystal lattice.

XRD

Energy source: X-Ray Cu K 8.04 keV, = 0.154 nm

當X-ray透過具晶格結構之材料時,產生建設性干涉(constructive interference)

Bragg's Law

 $n = 2 d \sin \theta$

Constructive interference only occurs for certain 's correlating to a (*hkl*) plane, specifically when the path difference is equal to n wavelengths.

Summary of Bragg & Laue

- When a diffraction condition is met there can be a reflected X-ray
 - Extra atoms in the basis can suppress reflections
- Three variables , , and d
 - is known
 - is measured in the experiment (2)
 - d is calculated
- From the planes (*hkl*)
 - □ a is calculated

 $d = \frac{n\lambda}{2\sin\theta}$

 $a = d\sqrt{h^2 + k^2 + l^2}$

- 2 Scan

The -2 scan maintains these angles with the sample, detector and X-ray source

Smaller Crystals Produce Broader XRD Peaks

Scherrer's Formula

$$t = \frac{K * \lambda}{B * \cos \theta_{\rm B}}$$

- *t* = thickness of crystallite
- K = constant dependent on crystallite shape (1-0.89)
- λ = x-ray wavelength
- B = FWHM (full width at half max) or integral breadth
- $\theta_{\rm B} = \text{Bragg Angle}$

Scherrer's Formula

What is *B*?

$$B = (2 \quad \text{High}) - (2 \quad \text{Low})$$

B is the difference in angles at half max

When to Use Scherrer's Formula

- Crystallite size <1000 Å</p>
- Peak broadening by other factors
 - Causes of broadening
 - Size
 - Strain
 - Instrument
 - If breadth consistent for each peak then assured broadening due to crystallite size
- K depends on definition of t and B
- Within 20%-30% accuracy at best

Sherrer's Formula References

Corman, D. Scherrer's Formula: Using XRD to Determine Average Diameter of Nanocrystals.

Data Analysis

- Plot the data (2 vs. Counts)
- Determine the Bragg Angles for the peaks
- Identification of samples
 - International Centre for Diffraction Data (ICDD)- Joint Committee on Powder Diffraction Standards (JCPDS). (資 料庫,很貴)
 - X Ray Spacing (<u>http://webmineral.com/X-Ray.shtml</u>)免費,但.
 - 查文獻
- Calculate d and a for each peak
- Apply Scherrer's Formula to the peaks

http://webmineral.com/X-Ray.shtml

X Ray Spacing - Microsoft Intern 檔案(P) 编辑(E) 检視(P) 表的最		Mail (10)						_ 6	E
		👷 和約局量 🚱	🙈 - 🕹 🛛	v • 🗔 🛍					1
彩址(D) (書) http://webminecol.com/X-Ray	-	~ ~	P 30 .		~		💌 🔁 663	5 (812 H 🖷	
	r of Rama							- 12-11 - Y	-
	6	XF	Ray Sp	acing					-
[Chemistry] [Crystal		BD Mineral Struct perfies] [A to Z L					ass] [Strunz C	lass)	
	10	ta Matrix Mi	Photo Gal	tories 😭	kotamatrix.4	10			
	_	250 - Over \$50 - Un nerals] [Rare Miner		pecimens] [Ab					
		ed weekly, for the Inventory of very							
Minerals Arrange	d by X-R	ay Powde	r Diffrac	tion					
Powder X-ray Diffraction (physico-chemical make-u									
patterns for the three mo									
mineral name and chemi	cal formuls.								
The XRD technique takes with x-rays of a fixed way									
analyzed for the reflection measured to discriminate <									>
8)							0 2	121-1224	-

X Ray Spacing

D1(lo)(hkl)	D2(l/lo)(hkl)	D3(l/lo)(hkl)	Mineral Name	Chemical Formula
0.7768(1)	0.7877(1)	3(1)	Bowieite	(Rh,Ir,Pt)1.77S3
0.779(1)	2.18(1)	0.8237(0.9)	Sudburyite	(Pd,Ni)Sb
0.7874(1)	0.8623(0.8)	0.8847(0.7)	<u>Rhodium</u>	(Rh,Pt)
0.8666(1)	2.122(1)(110)	0.8021(0.7)(321) <u>Skaergaardite</u>	l CuPd
1.019(1)	1.081(0.75)	1.887(0.63)	Nowackiite	Cu6Zn3As4S12
1.019(1)	1.757(1)	1.91(0.8)	Kalininite	ZnCr2S4

2.246(1) 1.945(0.42) 1.376(0.25) <u>Palladium</u> Pd,Pt

