奈米量測技術（III）
 XRD（X－ray Diffraction）（部分）

連興隆

X－ray Diffraction

－Miller indices
布拉格定律（Bragg＇s Law）
－Scherrer＇s Formula
Data Analysis Examples

Miller Indices

- Miller Indices are a symbolic vector representation for the orientation of an atomic plane in a crystal lattice and are defined as the reciprocals of the fractional intercepts which the plane makes with the crystallographic axes.
- (hkl) = parenthesis designate a crystal face or a family of planes throughout a crystal lattice.

XRD

Energy source：X－Ray

$\mathrm{Cu} \mathrm{Ka} 8.04 \mathrm{keV}, \lambda=0.154 \mathrm{~nm}$
當X－ray透過具晶格結構之材料時，產生建設性干涉（constructive interference）

2θ

Bragg's Law

$$
n \lambda=2 d \sin \theta
$$

- Constructive interference only occurs for certain θ 's correlating to a ($h k l$) plane, specifically when the path difference is equal to n wavelengths.

Incident beam
Scattered beam

Summary of Bragg \& Laue

- When a diffraction condition is met there can be a reflected X-ray
- Extra atoms in the basis can

$$
d=\frac{n \lambda}{2 \sin \theta}
$$ suppress reflections

- Three variables λ, θ, and d
- λ is known
- θ is measured in the experiment (2θ)
- d is calculated

$$
a=d \sqrt{h^{2}+k^{2}+l^{2}}
$$

- From the planes (hk)
- a is calculated

$\theta-2 \theta$ Scan

The $\theta-2 \theta$ scan maintains these angles with the sample, detector and X-ray source

Incident beam Normal to surface Scattered beam

Smaller Crystals Produce Broader XRD Peaks

Schemer's Formula

$t=\frac{K * \lambda}{B * \cos \theta_{B}}$

$t=$ thickness of crystallite
$K=$ constant dependent on crystallite shape (1-0.89)
$\lambda=x$-ray wavelength
$B=$ FWHM (full width at half max) or integral breadth
$\theta_{\mathrm{B}}=$ Bragg Angle

Schemer's Formula

What is B ?
$B=(2 \theta$ High $)-(2 \theta$ Low $)$
B is the difference in angles at half max

When to Use Schemer's Formula

- Crystallite size < 1000 Å
- Peak broadening by other factors
- Causes of broadening
- Size
- Strain
- Instrument
- If breadth consistent for each peak then assured broadening due to crystallite size
- K depends on definition of t and B
- Within 20\%-30\% accuracy at best

Data Analysis

－Plot the data（ 2θ vs．Counts）
－Determine the Bragg Angles for the peaks
－Identification of samples
－International Centre for Diffraction Data（ICDD）－Joint Committee on Powder Diffraction Standards（JCPDS）．（資料庫，很貴）

- X Ray Spacing（http：／／webmineral．com／X－Ray．shtml）免費，但．
- 查文獻
－Calculate d and a for each peak
－Apply Scherrer＇s Formula to the peaks

Seq	2theta	ci	rel. I	Seq	2theta	d	rel. I	
1	20.442	4.3419	8.99	3	40.314	2.2358	100.00	
2	38.598	2.3312	30.77	4	44.804	2.0216	58.64	
3	40.314	2.2358	100.00	5	46.834	1.9386	34.01	
4	44.804	2.0216	58.64	2	38.598	2.3312	30.77	
5	46.834	1.9386	34.01	8	68.258	1.3732	18.61	
6	53.300	1.7177	3.52	$?$	1	20.442	4.3419	8.99
7	65.204	1.4299	8.83	7	65.204	1.4299	8.83	
8	68.258	1.3732	18.61	6	53.300	1.7177	$3.52 . ?$	
9	78.341	1.2198	3.30	9	78.341	1.2198	3.30	

Sample: A:1206-3
Data file: B:1206-3.RAW
8-Dec-2005 16:03:52

http:/ / webmineral.com/ X-Ray.shtml

[Newest Minetalk] |Eare Minetak] [Cabinel Specimens] [about Us] [imgge Galery] Dakota Matric Minerak
Updated weekly, for the collector, educatoe, and researcher since 1996 Extensive Irventory of very Rare Mineraks. Visa and Masiercard are Welcome

Minerals Arranged by X-Ray Powder Diffraction

Powder X-ray Dittraction (XRD) is one of the primary techriques used by mineralogists and soid state chemists to examine the physico-chernical make-up of unknown solids. This data is represented in a collection of single-phase X -ray powder diffraction patterrs for the three most interse D values in the form of tables of interplanar spocings (D), relative intersities (I / l). hkl plane, mineral name and chemical formuks.

The XRD technique takes a sample of the material and ploces a powdered sample in a holder, then the sample is iluminated with x-rays of a fixed wave-length and the intensity of the reflected radiation is recorded using a goniometer. This data is then analyzed for the reflection angle to calculate the inter-atomic spacing (D value in Angstrom units - $10^{-6} \mathrm{~cm}$). The intersity(I) is measured to discriminate (using I ratios) the various D spacings and the results are compared to this table to identify possible \&

X Ray Spacing

D1(lo)(hkl)	D2(l/lo)(hkl)	D3(1/lo)(hkl)	Mineral Name C	Chemical Formula
0.7768(1)	0.7877(1)	3(1)	Bowieite	(Rh, Ir, Pt) 1.77S3
0.779(1)	2.18(1)	$0.8237(0.9)$	Sudburyite	(Pd,Ni)Sb
0.7874(1)	0.8623(0.8)	0.8847(0.7)	Rhodium	(Rh, Pt)
0.8666(1)	$2.122(1)(110)$	0.8021(0.7)(321)	1) Skaergaardite	e ! CuPd
1.019(1)	1.081(0.75)	1.887(0.63)	Nowackiite	Cu6Zn3As4S12
1.019(1)	1.757(1)	1.91(0.8)	Kalininite	ZnCr2S4
2.246(1)	1.945(0.42)	1.376(0.25)	Palladium	Pd, Pt

回家作撲（II）

1．決定是何物質？ 2．計算粒徑大小

