Handout for Chapter 5 Water pollution—Part I Surface water

2003/12/23; 連興隆老師

1.	Properties of Water
	● Density→Stratification Effect (分層化作用)
	 Melting and Boiling points
	• Specific Heat
	• Greenhouse effect. Water vapor is the most important greenhouse gas in our
	atmosphere.
	NOTE: Greenhouse effect vs Global warming
2.	The Hydrologic cycle (水文循環)
	Evaporation, Evapotranspiration (), runoff
3.	Water pollutants
	• Pathogens ()
	Oxygen-demanding Wastes
	DO
	COD
	BOD
	• Nutrients ()
	(Cultural) Eutrophication
	Limiting nutrients: Freshwater; seawater
	• Salts
	TDS
	Freshwater; Saline water; seawater
	Drinking water (USA)
	• Thermal pollution
	Two key factors: Metabolic rates; DO amount
	• Heavy metals()
	Most metals are toxic. Totally nondegradable. Nutrients/poison.
	Inhalation, Ingestion. Example: lead in gasoline →aerosols
	Kidneys → the most important organ for the elimination of metals (Cd, Pb, Hg)
	Pesticides: Insecticides, Herbicides
	Organochlorines: DDT/DDE→ bioresistance, bioaccumulation/biomagnification,
	food chain, ecosystem

Organophosphates:

Carbamates → carbamic acid, H₂NCOOH

Herbicides (

): 2,4-D, 2,4,5-T (banned) because

- Volatile organic compounds (VOCs)
- 4. BOD (biochemical oxygen demand)

Definition:

Aerobic/anaerobic

BOD₅ Carbonaceous oxygen demand (CBOD)

$$BOD_5 = \frac{DO_i - DO_f}{P}$$
 (unseeded)

$$BOD_5 = \frac{(DO_i - DO_f) - (B_i - B_f)(1 - P)}{P}$$
 (seeded)

Modeling BOD:_____order reaction

$$BOD_{t} = L_{o}(1-10^{-kt})$$

$$k_T = k_{20} \theta^{(T-20)} \qquad \theta = \underline{\hspace{1cm}}$$

5. Nitrification and NBOD (Nitrogenous oxygen demand)

Definition: (eqs. 5.16, 5.17)

Figure 5.12 (p195); Figure 5.13

 mgO_2/mgN_2

- 6. COD, ThOD
- 7. The oxygen Sag Curve(_____)

Oxygen input: Reaeration

$$Rate = k_r D$$

$$k_r = \frac{3.9u^{0.5}}{H^{1.5}}$$

Oxygen decay: Deoxygenation

$$Rate = k_d L_0 e^{-k_d t}$$

Rate of increase of the deficit:

$$\frac{dD}{dt} = k_d L_o e^{-k_d t} - k_r D$$

] (Streeter-Phelps oxygen sag equation)

Critical time: