Chapter 2 Environmental Microbiology (Introduction)

Topics:

- 2-1 Metabolic classification of **m**icro**o**rganisms (MO)
- 2-2 Biological Kinetics/ Enzyme kinetics
- 2-3 BOD
- 2-4 Application of microorganisms in wastewater treatment processes.

After this lecture, you are expected to explain:

- 1. What are the energy, carbon, and electron donor sources for different types of MO?
- 2. What's the difference between aerobic and anaerobic bacteria?
- 3. What's the difference between Michaelis-Menten Equation and Monod Equation? And to know:
 - 4. How to derive the Michaelis-Menten Equation?
 - 5. How to derive the BOD equation based on mass balance?
 - 6. Name typical MO related to wastewater treatment processes.

2-1 Metabolic classification of microorganisms (微生物的分類—依代謝方式)

(光合菌) (光合自營菌) (光合異營菌)Chemotrophs—chemoautotrophs/heterotrophs(化合菌) (化學自營菌) (化學異營菌) ~

Phototrophs—photoautotrophs/photoheterotrophs

Aerobic(好氧性) Anaerobic(厭氧性) Facultative(兼氣性,發酵)

· Criteria of classification:

Energy source, carbon source, electron donor(電子供應者), electron acceptor(電子接受者)

- ✓ Phototrophs: Light as energy source (以日光能做為能量來源之菌類)
 - Photoautotrophs: <u>CO₂ as carbon source</u> and H₂O, H₂ or H₂S as e⁻ donor (以二氧化碳作為碳源;水、氫、或硫化氫為電子供應者),大部分為厭氧 菌。

2. Photo**hetero**trophs: <u>Organics as carbon source and electron donor</u> (以 有機物作為碳源及電子供應者), 皆為兼氣菌。

常見之 Photoautotrophs 有 Algae, cyanobacteria, photosynthetic bacteria (又稱 phototrophic bacteria), 他們進行之反應稱「無氧光合作用」(Anoxygenic photosynthesis):

$$12H_2S + 6CO_2 \xrightarrow[photoautotrophs]{light} C_6H_{12}O_6 + 6H_2O + 12S^0$$

Photoautotrophs: Purple sulfur bacteria, green bacteria

常見之 Photoheterotrophs 有 purple non-sulfur bacteria.

- ✓ Chemotrophs: chemicals both organic and inorganic as energy source (以化學能做為能量來源之菌類)
 - **1.** Chemo**auto**trophs: <u>CO₂ as carbon source</u> and Inorganics as energy source (以二氧化碳作為碳源;無機物為能量來源),大部分為好氧菌。
 - 2. Heterotrophs: <u>Organics</u> as both carbon and energy source (以為有機物作為碳源及能量來源),此類微生物自然界中最常見之菌種,包含大部分之細菌類(Bacteria)、真菌(Fungi)、原生動物(Protozoa)。

常見之 Chemoautotrophs 有:

Nitrifying bacteria:

$$NH_4^++O_2$$
 Nitrosomonos $NO_2^-+O_2$ Nitrobacter NO_3^- Energy

• Sulfur-oxidizing bacteria (pH≤2, acidphilic bacteria 喜酸菌)
Utilize H₂S, S⁰, or S₂O₃²⁻ as energy source

$$H_2S + 2O_2 \xrightarrow{\text{Thiobacillus thiooxidans}} H_2SO_4 + Energy$$

Crown corrosion in sewers (下水道「皇冠」腐蝕)

- Iron bacteria→ filamentous bacteria (絲狀菌)
 Fe²⁺ as energy source +O₂→ Fe³⁺ + energy (水管土味惡臭)
- **Hydrogen bacteria**: H₂ as energy source, CO₂ as carbon source.

	Phototrophs		Chemotrophs	
	Photo auto trophs	Photoheterotrophs	chemo auto trophs	heterotrophs
Energy	Light	Light	Inorganics	Organics
source				
Carbon	CO ₂	Organics	CO ₂	Organics
source				
Oxygen	Anaerobic	Facultative	Aerobic	Aerobic/anaerobic
demand	(mostly)			
Electron	H ₂ O, H ₂ , H ₂ S	Organics	Inorganics	Organics
donor				

Aerobic vs Anaerobic

應用上 aerobic →活性污泥法 anaerobic →厭氧消化

Aerobic reaction:

Organics +
$$O_2$$
 \rightarrow CO₂ + H₂O + energy

Anaerobic reaction:

Organics + $NO_3 \rightarrow CO_2 + N_2 + energy$ (facultative)

Organics + $SO_4^{2-} \rightarrow CO2 + H_2S + energy$ (strict anaerobic)

Organics → Organic acids + CO₂+ H₂O +energy (strict anaerobic)

Organics \rightarrow CH₄ + CO₂ + energy (strict anaerobic)

低

