Chapter 2 Environmental Microbiology (Introduction) #### Topics: - 2-1 Metabolic classification of **m**icro**o**rganisms (MO) - 2-2 Biological Kinetics/ Enzyme kinetics - 2-3 BOD - 2-4 Application of microorganisms in wastewater treatment processes. After this lecture, you are expected to explain: - 1. What are the energy, carbon, and electron donor sources for different types of MO? - 2. What's the difference between aerobic and anaerobic bacteria? - 3. What's the difference between Michaelis-Menten Equation and Monod Equation? And to know: - 4. How to derive the Michaelis-Menten Equation? - 5. How to derive the BOD equation based on mass balance? - 6. Name typical MO related to wastewater treatment processes. ## 2-1 Metabolic classification of microorganisms (微生物的分類—依代謝方式) (光合菌) (光合自營菌) (光合異營菌)Chemotrophs—chemoautotrophs/heterotrophs(化合菌) (化學自營菌) (化學異營菌) ~ Phototrophs—photoautotrophs/photoheterotrophs Aerobic(好氧性) Anaerobic(厭氧性) Facultative(兼氣性,發酵) · Criteria of classification: Energy source, carbon source, electron donor(電子供應者), electron acceptor(電子接受者) - ✓ Phototrophs: Light as energy source (以日光能做為能量來源之菌類) - Photoautotrophs: <u>CO₂ as carbon source</u> and H₂O, H₂ or H₂S as e⁻ donor (以二氧化碳作為碳源;水、氫、或硫化氫為電子供應者),大部分為厭氧 菌。 **2.** Photo**hetero**trophs: <u>Organics as carbon source and electron donor</u> (以 有機物作為碳源及電子供應者), 皆為兼氣菌。 常見之 Photoautotrophs 有 Algae, cyanobacteria, photosynthetic bacteria (又稱 phototrophic bacteria), 他們進行之反應稱「無氧光合作用」(Anoxygenic photosynthesis): $$12H_2S + 6CO_2 \xrightarrow[photoautotrophs]{light} C_6H_{12}O_6 + 6H_2O + 12S^0$$ Photoautotrophs: Purple sulfur bacteria, green bacteria 常見之 Photoheterotrophs 有 purple non-sulfur bacteria. - ✓ Chemotrophs: chemicals both organic and inorganic as energy source (以化學能做為能量來源之菌類) - **1.** Chemo**auto**trophs: <u>CO₂ as carbon source</u> and Inorganics as energy source (以二氧化碳作為碳源;無機物為能量來源),大部分為好氧菌。 - 2. Heterotrophs: <u>Organics</u> as both carbon and energy source (以為有機物作為碳源及能量來源),此類微生物自然界中最常見之菌種,包含大部分之細菌類(Bacteria)、真菌(Fungi)、原生動物(Protozoa)。 ## 常見之 Chemoautotrophs 有: Nitrifying bacteria: $$NH_4^++O_2$$ Nitrosomonos $NO_2^-+O_2$ Nitrobacter NO_3^- Energy • Sulfur-oxidizing bacteria (pH≤2, acidphilic bacteria 喜酸菌) Utilize H₂S, S⁰, or S₂O₃²⁻ as energy source $$H_2S + 2O_2 \xrightarrow{\text{Thiobacillus thiooxidans}} H_2SO_4 + Energy$$ Crown corrosion in sewers (下水道「皇冠」腐蝕) - Iron bacteria→ filamentous bacteria (絲狀菌) Fe²⁺ as energy source +O₂→ Fe³⁺ + energy (水管土味惡臭) - **Hydrogen bacteria**: H₂ as energy source, CO₂ as carbon source. | | Phototrophs | | Chemotrophs | | |----------|---|-------------------|--------------------------|-------------------| | | Photo auto trophs | Photoheterotrophs | chemo auto trophs | heterotrophs | | Energy | Light | Light | Inorganics | Organics | | source | | | | | | Carbon | CO ₂ | Organics | CO ₂ | Organics | | source | | | | | | Oxygen | Anaerobic | Facultative | Aerobic | Aerobic/anaerobic | | demand | (mostly) | | | | | Electron | H ₂ O, H ₂ , H ₂ S | Organics | Inorganics | Organics | | donor | | | | | #### Aerobic vs Anaerobic 應用上 aerobic →活性污泥法 anaerobic →厭氧消化 Aerobic reaction: Organics + $$O_2$$ \rightarrow CO₂ + H₂O + energy Anaerobic reaction: Organics + $NO_3 \rightarrow CO_2 + N_2 + energy$ (facultative) Organics + $SO_4^{2-} \rightarrow CO2 + H_2S + energy$ (strict anaerobic) Organics → Organic acids + CO₂+ H₂O +energy (strict anaerobic) Organics \rightarrow CH₄ + CO₂ + energy (strict anaerobic) 低